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Abstract Interpolatorymethods offer a powerful framework for generating reduced-
order models (ROMs) for non-parametric or parametric systems with time-varying
inputs. Choosing the interpolation points adaptively remains an area of active interest.
A greedy framework has been introduced in [12, 14] to choose interpolation points
automatically using a posteriori error estimators. Nevertheless, when the parameter
range is large or if the parameter space dimension is larger than two, the greedy
algorithm may take considerable time, since the training set needs to include a con-
siderable number of parameters. As a remedy, we introduce an adaptive training
technique by learning an efficient a posteriori error estimator over the parameter
domain. A fast learning process is created by interpolating the error estimator using
radial basis functions (RBF) over a fine parameter training set, representing the
whole parameter domain. The error estimator is evaluated only on a coarse training
set including a few parameter samples. The algorithm is an extension of the work
in [9] to interpolatory model order reduction (MOR) in frequency domain. Beyond
the work in [9], we use a newly proposed inf-sup-constant-free error estimator in the
frequency domain [14], which is often much tighter than the error estimator using the
inf-sup constant. Three numerical examples demonstrate the efficiency and validity
of the proposed approach.
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1 Introduction

MORbased on system theory and interpolation [3, 12, 13, 16, 17] has been developed
as a class of efficient MOR methods among others. Detailed summary of those
methods and comparison of them with other classes of MOR methods can be found
in some survey papers and books [1, 2, 4, 7, 8, 18, 30]. A major advantage of the
interpolatorymethods is their flexibility in reducing systemswith time- or parameter-
varying inputs, since they are based on the transfer function or the input-output
relation of the systems, which is independent of the input signal. On the contrary,
the snapshot MOR methods, such as proper orthogonal decomposition (POD) and
the reduced basis methods (RBM) are input dependent, and are often less efficient
in reducing systems with varying inputs as compared with the interpolatory MOR
methods [7].

A major topic of interest in interpolatory MOR methods is how to determine the
interpolation points, so as to adaptively construct the ROM. Many methods have
appeared in the last 10 years, some are heuristic [5, 15, 21, 23], some entail high
computational complexity [12, 33], and some are inefficient for systems with more
than one parameter [17, 22]. Random interpolation points are used in [6].

Recently, a new error estimator for the reduced transfer function error and an algo-
rithm for iteratively choosing the interpolation points are proposed in [14], which
overcomesmany difficulties being faced by the above-mentioned interpolatorymeth-
ods. It is neither heuristic nor needs a high computational cost. Moreover, it is a
parametric MOR method and applicable to systems with more than two parameters.
One shortcoming of the method is that the interpolation points are selected from a
given training set, which must be decided a priori and becomes larger and larger
with the increase of the parameter range or the parameter space dimension. Such a
technique is standard also for the RBM, where a training set must be given before a
greedy algorithm starts. This makes the greedy algorithm slow down when there is a
large number of samples in the training set due to the large dimension or large range
of the parameter domain. This is due to the fact that at each iteration of the greedy
algorithm, an error estimator needs to be repeatedly computed for all the samples in
the training set. Many adaptive training techniques have been proposed recently for
RBM [9, 19, 20, 24]. In contrast, no efficient training techniques are proposed for the
interpolatory MOR methods, though similar greedy algorithms using fixed training
sets are proposed in [12, 14]. In this work, we extend the adaptive training technique
in [9] for RBM to an adaptive training technique for the interpolatory MORmethods
in [12, 14].

The main contribution of this work is an efficient algorithm to adaptively choose
interpolation points for parametric, linear time-invariant (LTI) systems having a wide
range of parameter values or with a large parameter space dimension. Comparedwith
the greedy algorithms proposed in [12, 14], we have added two new ingredients to
the greedy algorithms: (i) a surrogate for the error estimator, which can be cheaply
computed and (ii) an adaptive sampling approach using the surrogate estimator.
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The aim is that instead of computing the error estimator over the whole parameter
domain for the ROM construction, a surrogate estimator is computed. In this way,
the error estimator is computed only on a coarse training set at each iteration of
the greedy algorithm, and for parameters outside the coarse training, the surrogate
estimator is computed. Finally, the training set needs to be initialized by including
only a few parameter samples, and can be iteratively updated using the surrogate
estimator instead of the error estimator itself. As a consequence, a significant amount
of computational cost can be saved for such systems.

The idea is similar to the one in [9] for the RBM. However, in [9], an error
estimator in time domain is used, where the inf-sup constant needs to be computed
for each parameter in the training set, which is computationally inefficient for large-
scale systems. In this work, we use an inf-sup-constant-free error estimator newly
proposed in [14]. It is suitable for interpolatory MORmethods, since it estimates the
transfer function error in the frequency domain.

The paper is organized as follows. In Sect. 2, we briefly review interpolatory
MOR methods based on projection. The greedy interpolatory methods [12, 14] for
parametric systems are reviewed in Sect. 3. In Sect. 4, we introduce the basic idea of
RBF interpolation and elaborate on the process of learning the error estimator using
a surrogate estimator constructed by RBF interpolation. Based on this surrogate
estimator, we propose the greedy algorithm IPSUEwith adaptive training technique
for adaptively choosing the interpolation points in a more efficient and fully adaptive
way. We present numerical results on three real-word examples in Sect. 5 to show
the robustness of IPSUE and conclude the work in the end.

2 Interpolatory MOR

In this work, we are interested in MOR of parametric LTI systems in the state-space
representation given by

�(µ) :
{
Eẋ(t,µ) = A(µ)x(t,µ) + B(µ)u(t),

y(t,µ) = C(µ)x(t,µ), x(0,µ) = 0.
(1)

Here, µ := [
μ1, μ2, . . . , μd

]T ∈ R
d is the vector of parameters (geometric or phys-

ical). x(t,µ) ∈ R
n is the state vector and n is typically very large. u(t) ∈ R

m is the
input vector and y(t,µ) ∈ R

p is the output vector. A(µ) ∈ R
n×n is the state matrix,

B(µ) ∈ R
n×m is the input matrix, and C(µ) ∈ R

p×n is the output matrix. For the
case when m = p = 1, Eq. (1) is referred to as a single-input, single-output (SISO)
system. Otherwise, it is known as multi-input, multi-output (MIMO) system.

The ROM we seek should preserve the same structure of the FOM but have a
much smaller dimension. We assume that the state vector lies (approximately) in the
span of a low-dimensional linear subspace V ⊂ R

n×r , r � n, such that x(t,µ) ≈



100 S. Chellappa et al.

Vx̂(t,µ). Column vectors in the matrix V ∈ R
n×r constitute an orthogonal basis of

V. Replacing x(t,µ) in Eq. (1) with its approximationVx̂(t,µ) and further imposing
Petrov-Galerkin projection on the residual introduced by the approximation in a test
subspace W ⊂ R

n×r leads to

WT
(
V ˙̂x(t,µ) − A(µ)Vx̂(t,µ) − B(µ)u(t)

)
≡ 0,

where the column vectors in the matrixW ∈ R
n×r correspond to an orthogonal basis

of W. The resulting ROM is given as

�̂(µ) :
{
Ê ˙̂x(t,µ) = Â(µ)x̂(t,µ) + B̂(µ)u(t),

ŷ(t,µ) = Ĉ(µ)x̂(t,µ), x̂(0,µ) = 0.
(2)

Here, x̂(t,µ)∈Rr is the reduced state vector, Ê(µ)=WTE(µ)V ∈ R
r×r , Â(µ) =

WTA(µ)V ∈ R
r×r , B̂(µ) = WTB(µ) ∈ R

r×m, Ĉ(µ) = C(µ)V ∈ R
p×r are the

reduced system matrices, and ŷ(t,µ) is the reduced output vector. The goal of MOR
is to find the two subspaces V,W ∈ R

n×r . Different MOR methods vary in how
they generate the matrices W,V.

Interpolatory MOR methods construct V,W ∈ R
n×r based on the transfer func-

tion of the system, which is independent of the input signal. The transfer function of
the system described in Eq. (1) is given by

H(µ̃) := C(µ)
( =:A (µ̃)︷ ︸︸ ︷
sE − A(µ)

)−1
B(µ). (3)

Here, µ̃ := [
s, μ1, μ2, . . . , μd

]T ∈ R
d+1 is the vector of parameters with the addi-

tional Laplace variable s ∈ jR, where j is the imaginary unit. The corresponding
ROM of Eq. (3) is of the form

Ĥ(µ̃) := Ĉ(µ) ˆA (µ̃)−1B̂(µ), (4)

with ˆA (µ̃) := sÊ − Â(µ).
Many interpolatory methods have been proposed for linear systems, especially

for linear non-parametric systems. Themost representative methods are themoment-
matching methods [16, 17], where the H2-optimal method IRKA [17] constructs a
ROM satisfying the necessary conditions of local optimality. All these methods are
known to be applicable to non-parametric systems. Later, IRKA is extended toMOR
for parametric systems [3], where some pairs of projection matrices are constructed
for given samples of parameters, then they are combined together to get the final pair
of projectionmatrices. No rule is used for selecting the samples. In [22], a method for
parametric systems is proposed based onH2 ⊗ L2-optimality, but is only applicable
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to systems with one parameter and is facing high computational complexity for
systems with n ≥ 1000.

Choosing interpolation points using a greedy algorithm guided by an a posteriori
error bound is proposed in [12]. However, computing the error estimator needs to
compute the smallest singular values of the large matrixA (µ̃), the inf-sup constant.
An inf-sup-constant-free error estimator is newly proposed in [14], which can be
efficiently computed, and is also much tighter than the error bound [12] for many
systems with small inf-sup constants. A similar greedy algorithm is proposed in [14]
for choosing the interpolation points using the new error estimator. The adaptive
training approach proposed in this work is based on the greedy algorithm and the
new error estimator in [14]. In the next section, we briefly review the error estimator
and the corresponding greedy algorithm.

3 Greedy Method for Choosing Interpolation Points

The transfer function can be seen as a mapping from the space of inputs Rm to the
space of outputs Rp passing through a high-dimensional intermediate state in Rn . If
we look at the matrix product A −1(µ̃)B(µ) in H(µ), we may consider the primal
system

A (µ̃)Xpr(µ̃) = B(µ). (5)

Here, Xpr(µ̃) ∈ R
n is the primal state vector. The reduced primal system is defined

as
ˆA (µ̃)X̂pr(µ̃) = B̂(µ). (6)

The approximate primal solution is given by X̃pr(µ̃) := VX̂pr(µ̃) and the correspond-
ing residual is

rpr(µ̃) = B(µ) − A (µ̃)X̃pr(µ̃). (7)

Additionally, by considering the matrix product C(µ)A −1(µ̃) inH(µ), we have the
following dual system:

A T(µ̃)Xdu(µ̃) = CT(µ). (8)

Xdu(µ̃) ∈ R
n is the dual state vector. The reduced dual system is given as

ˆA T(µ̃)X̂du(µ̃) = ĈT(µ). (9)

The approximate dual solution is given by X̃du(µ̃) := VduX̂du(µ̃) and the correspond-
ing residual is

rdu(µ̃) = CT(µ) − A T(µ̃)X̃du(µ̃). (10)
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For parametric LTI systems, adopting the spirit of the RBM, [12] introduced a
method to automatically generate a ROM through a greedy algorithm. The authors
introduce a primal-dual residual-based a posteriori error estimator for the transfer
function approximation error ‖H(µ̃) − Ĥ(µ̃)‖, for both SISO and MIMO systems.
For SISO systems, it reads

|H(µ̃) − Ĥ(µ̃)| ≤ ‖rpr(µ̃)‖2‖rdu(µ̃)‖2
σmin(µ̃)

. (11)

Here, σmin(µ̃), called the inf-sup constant, is the smallest singular value of the matrix
A (µ̃) as defined in Eq. (3). The primal and dual residuals are given in Eq. (7) and
Eq. (10), respectively. The work [14] improves the method in [12] by avoiding the
calculation of the inf-sup constant required for the error estimator. This is achieved
by introducing a dual-residual system

A T(µ̃)edu(µ̃) = rdu(µ̃). (12)

The following proposition from [14] gives the a posteriori error bound.

Proposition 1 The transfer function approximation error can be bounded as

|H(µ̃) − Ĥ(µ̃)| ≤ ∣∣X̃T
du(µ̃)rpr(µ̃)

∣∣ + ∣∣eTdu(µ̃)rpr(µ̃)
∣∣.

For a proof of Proposition 1, we refer to [14]. In this form, the error bound is
not computationally efficient since one needs to solve the full-order dual-residual
system (12) to obtain edu(µ̃). Instead, system (12) is reduced by an orthogonal matrix
Ve ∈ R

n×� to obtain
ˆA T
e (µ̃)êdu(µ̃) = r̂du,e(µ̃), (13)

where ˆAe(µ̃) := VT
e A (µ̃)Ve and r̂du,e(µ̃) := VT

e rdu(µ̃). The projection matrices
V,Vdu and Ve corresponding to the primal, dual, and the dual-residual system are
generated offline.

By using the approximate solution to the dual-residual system, an efficiently
computable error estimator is obtained as

|H(µ̃) − Ĥ(µ̃)| �
∣∣X̃T

du(µ̃)rpr(µ̃)
∣∣ + ∣∣ẽTdu(µ̃)rpr(µ̃)

∣∣ =: �(µ̃), (14)

where ẽdu(µ̃) := Ve êdu(µ̃). For ease of comparison, we first present the greedy
algorithm for parametric systems introduced in [14] as Algorithm 1.
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Algorithm 1 Greedy ROM Construction for Parametric Systems [14]
Input: System matricesA(µ),B(µ),C(µ) , training set � of cardinality Nμ covering the interest-

ing parameter ranges, tolerance εtol .
Output: Projection matrix V.
1: InitializeV = [ ],Vdu = [ ],Ve = [ ], ε = 1 + εtol , fix η, the number of moments to be matched.
2: Initial interpolation point µ̃1: the first sample in �. µ̃1

α : the last sample in �. Set i = 1.
3: while ε > εtol do
4: Solve Eq. (5) at interpolation point µ̃ = µ̃i and update projection matrix

V = orth
([V mmm(A (µ̃i ),B(µ̃i ), η, µ̃i )]).

5: Solve Eq. (8) at interpolation point µ̃ = µ̃i and update projection matrix

Vdu = orth
([Vdu mmm(A T(µ̃i ),CT(µ̃i ), η, µ̃i )]).

6: Solve Eq. (12) at interpolation point µ̃ = µ̃i
α and update projection matrix

Ve = orth
([Ve Vdu mmm(A T(µ̃i

α),CT(µ̃i
α), η, µ̃i

α)]).
7: i = i + 1.
8: µ̃i = argmax

µ̃∈�
�(µ̃).

9: µ̃i
α = argmax

µ̃∈�

∣∣ẽTdu(µ̃)rpr(µ̃)
∣∣.

10: ε = �(µ̃i ).
11: end while

It is automatic apart from the need for determining, a priori, a suitable training
set �. The method proceeds by picking points from � that maximize the error
estimator at every iteration and updating the three projection matrices V,Vdu,Ve.
However, there is no principledway to select the training set a priori. If not adequately
sampled, the training set may result in a ROM whose error is not uniformly below
the tolerance. When the parameters involved can take on a wide range of values,
or if many parameters are involved, then the number of parameter samples in �

becomes large and the offline computation costs rise. We propose to solve this issue
by constructing a surrogate model for �(µ̃) in Eq. (14) and assure that computing
the surrogate is much cheaper than computing the error estimator itself. The next
section discusses this idea.

Remark 1 The algorithm is also applicable to MIMO systems. In this case, the
transfer function is matrix-valued. The key is how to compute the error estimator
�(µ̃). We first estimate the error of the reduced transfer function entry-wise, i.e.,

|Hi j (µ̃) − Ĥi j (µ̃)| �
∣∣X̃T

du(µ̃)rpr(µ̃)
∣∣ + ∣∣ẽTdu(µ̃)rpr(µ̃)

∣∣ =: �i j (µ̃). (15)
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Note that the i j-th entry of the transfer function corresponds to the input signal
at the j-th input port and the signal at the i-th output port. Then, X̃du(µ̃) is the
solution to the dual system by considering the right-hand side as the i-th row vector
ofC(µ), namely,CT(: , i) in Eq. (9). Correspondingly, the residual rpr(µ̃) is obtained
by solving Eq. (6) with the right-hand side being B(: , j), the j-th column of B(µ).
Then, �(µ̃) = argmax

i, j
�i j (µ̃).

Remark 2 In order to build the projection matrices (V,Vdu,Ve), [14] makes use of
the multi-moment matching (MMM) algorithm from [13]. The algorithm provides
an orthogonal basis for the solution at a given interpolation point, obtained through
multivariate power series expansion of the state vector. To be focused on our main
contribution, we refer to [13, 14] for detailed computations. For use in the proposed
algorithm, we give below the call to the algorithm in MATLAB®notation as

Vmmm = mmm(A(μ̃0),B(μ̃0), η, μ̃0).

Here,A(μ̃0) denotes an arbitrary matrix evaluated at a given interpolation point μ̃0,
B(μ̃0) corresponds to the right-hand sidematrix in Eqs. (5), (8) and (12), respectively.
η is the number of moments to be matched in the power series. When η = 0, the
MMM algorithm is equivalent to RBM, see [14] for more explanations.

4 Adaptive Training by Learning the Error Estimator in
the Parameter Domain

In this section,wepropose an adaptive training technique, so that the greedy algorithm
starts with a training set with small cardinality, which is then updated iteratively by
using a surrogate error estimator. Different works have considered surrogate models
of error estimators/indicators [9, 10, 25]. All of these consider a surrogate in the
context of the RBM. In this work, we deal with the frequency-domain interpolatory
MOR methods and focus on a surrogate model of an error estimator for the transfer
function approximation error. Themethodwe propose here is essentially an extension
of the RBF-based error surrogate in [9] to the frequency domain. Beyond the work
in [9], we introduce a learning process in Sect. 4.2 to show in detail how a surrogate
estimator is constructed for any parameter in the whole parameter domain. We begin
by introducing the method of RBF interpolation.

4.1 Radial Basis Functions

Radial basis functions belong to the family of kernel methods and are a popular
technique to generate surrogate models of multivariate functions f : Rd+1 → R,
defined in a domain � ⊂ R

d+1. It may be the case that the function f itself is
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unknown and one only knows a set of inputs M = {µ̃1, µ̃2, . . . , µ̃�} ⊂ � and the
corresponding function evaluations F = { f1, f2, . . . , f�} ⊂ R. Or, it may be the
case that f is known, but very expensive to evaluate repeatedly. For either case, RBF
serves to generate an interpolant g : Rd+1 → R of f given by

g(µ̃) =
�∑

i=1

ci�(‖µ̃ − µ̃i‖), ∀µ̃ ∈ �, (16)

such that it interpolates the original function at the set of input points (or centers) inM ,
i.e., f (µ̃i ) = g(µ̃i ), i = 1, . . . , �. Moreover, | f (µ̃) − g(µ̃)| � tol for all µ̃ ∈ �.
The functions �(·) are the kernels defined as (µ̃1, µ̃2) := �(‖µ̃1 − µ̃2‖) for all
µ̃1, µ̃2 ∈ �. They are called radial basis functions owing to their radial dependence
on µ̃. The coefficients {ci }�i=1 are determinedby solving the linear systemof equations

⎡
⎢⎣

(µ̃1, µ̃1) · · · (µ̃1, µ̃�)
...

. . .
...

(µ̃�, µ̃1) · · · (µ̃�, µ̃�)

⎤
⎥⎦

︸ ︷︷ ︸
R

⎡
⎢⎣
c1
...

c�

⎤
⎥⎦

︸ ︷︷ ︸
c

=
⎡
⎢⎣
f (µ̃1)

...

f (µ̃�)

⎤
⎥⎦ .

︸ ︷︷ ︸
b

(17)

We need R to be invertible. Assuming that the centers µ̃i are pairwise distinct, it can
be shown that R is positive definite for a suitable choice of the RBF �(·) and thus
Eq. (17) has a unique solution. The class of RBF giving rise to positive definite R is
limited. As a workaround, some additional constraints are imposed in practice, i.e.,

�∑
i=1

ci p j (µ̃i ) = 0, j = 1, 2, . . . , D,

so that a larger class of �(·) can be admitted. Moreover, the addition of these con-
straints help in the exact recovery of polynomial functions. We refer to [11] for
more details. The functions p1, p2, . . . , pD are a basis of the polynomial space with
suitable degree. In practice, we choose D to be equal to the dimension of the param-
eter space plus one: (d + 1) + 1. With the new conditions imposed, the radial basis
interpolant now becomes

g(µ̃) :=
�∑

i=1

ci�(‖µ̃ − µ̃i‖) +
D∑
j=1

λ j p j (µ̃). (18)

This results in a saddle-point system of dimension NRBF := (D + �) × (D + �):

[
R P
PT 0

] [
c
λ

]
=

[
b
0

]
. (19)
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With a proper choice of p1, p2, . . . , pD , the augmented coefficient matrix is positive
definite for a wider choice of kernel functions�(·). Following the common approach
in the RBF literature [11], in our numerical experiments, we consider degree-1 poly-
nomials in (d + 1) variables and the matrix P takes the form

P =
⎡
⎢⎣
1 s1 · · · μd

1
...

...
. . .

...

1 s� · · · μd
�

⎤
⎥⎦ ,

where s j , μ1
j , . . . , μ

d
j with j = 1, 2, . . . , � are entries of the j-th parameter sample

µ̃ j in the training set, i.e., µ̃ j := [s j , μ1
j , . . . , μ

d
j ]T.We refer to [32] for an exhaustive

theoretical analysis of RBFs and the recent review paper [29] that analyzes RBFs in
the larger context of kernel-based surrogate models.

4.2 Learning the Error Estimator over the Parameter Domain

As highlighted in the Introduction, one of themain bottlenecks of the standard greedy
algorithm is that the error estimator �(µ̃) needs to be determined at every parameter
in the training set. In order to evaluate it cheaply, we first construct a surrogate
model of the error estimator by learning the error estimator in the whole parameter
domain using RBF interpolation. We have the multivariate function f (µ̃) := �(µ̃)

and the learning step involves determining the coefficients c in Eq. (19). First, we
evaluate the error estimator at a small number of parameters in a coarse training set
�c : {µ̃1, . . . , µ̃Nc

}. These points shall serve as the centers µ̃ of theRBF interpolation
with Nc as the number of centers. Note that, with regard to the discussion in Sect. 4.1,
we have � = Nc.

Next, we define the kernel function �(·) and set up the linear system defined in
Eq. (19). Many choices of the kernel function exist, and in the numerical experiments
we have used the inverse multiquadric and the thin-plate spline kernel functions. For
a deeper discussion, we refer to [32]. We note here that the assembling of the kernel
matrix R can be done efficiently and software implementations exist to achieve this
[29]. The right-hand side is defined by b := [�(µ̃1), . . . ,�(µ̃Nc

)]T.
Equation 19 constitutes a small, dense system of linear equations. The computa-

tional cost of its solution scales as O((Nc + D)3). However, since Nc, D are small,
the cost remains under control. Once knowing c after solving Eq. (19), the interpolant
g(µ̃) of the error estimator is obtained over the whole parameter domain employing
only function evaluations in Eq. (18). Thus, the learned surrogate of the error esti-
mator is g(µ̃). It is not difficult to see that computing the error estimator over the
parameter domain is more expensive than using the surrogate g(µ̃).

• The cost of computing the surrogate g(µ̃) for all the parameter samples µ̃ in a
certain parameter set with cardinality N f is
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– Solving small, dense ROMs: O(r3) × Nc.
– Matrix-vector products to evaluate residuals: O(nr) × Nc.
– Vector-vector inner products to evaluate Eq. (14) : O(n) × Nc.
– Identifying the coefficients c by solving Eq. (19): O((Nc + D)3).
– Evaluating the interpolants through function evaluation Eq. (18) over a param-
eter set with cardinality N f : O(Nc + D) × N f .

• The cost of evaluating the error estimator �(µ̃) for all the parameter samples µ̃
in a certain parameter set with cardinality N f are

– Solving small, dense ROMs: O(r3) × N f .
– Matrix-vector products to evaluate residuals: O(nr) × N f .
– Vector-vector inner products to evaluate Eq. (14) : O(n) × N f .

Here, n is the full-order dimension of the system; the reduced size r is as small
as Nc + D, i.e., r ≈ Nc + D. For N f  Nc, it is clear that computing the error
estimator is more expensive than computing the surrogate.

4.3 Adaptive Choice of Interpolation Points with Surrogate
Error Estimator

In Algorithm 2, we present the proposed adaptive method to choose interpola-
tion points using a surrogate error estimator. We call the algorithm IPSUE—
Interpolation Points using SUrrogate error Estimator. To follow the learning
process in Sect. 4.2, in practice, we do not consider the entire domain R

d+1, but a
fine representation of it given by� f := {µ̃1, . . . , µ̃N f

}, containing N f  Nc param-
eters. Therefore, we consider two training sets: a coarse training set �c and a fine
training set� f . In Step 4 of Algorithm 2, we perform Steps 4–6 fromAlgorithm 1. In
Step 5, the error estimator is evaluated only over the coarse training set, an important
distinction from Algorithm 1. In Step 6, the argument of the maximum is chosen
as the next interpolation point for V. Step 7 selects the parameter that maximizes
the second summand of the error estimator and uses it as the interpolation point
(µ̃i

α) for enriching Ve in the next iteration. As noted in [14], it is important that the
interpolation points µ̃i and µ̃i

α are distinct, in order to ensure that Vdu �= Ve. Then,
in Step 8, using �(µ̃) for all µ̃ ∈ �c we learn the error estimator over the parameter
domain (represented by� f ) by determining g(µ̃) for all µ̃ ∈ � f . In Step 9, n(1)

a new
parameters are identified from � f such that they have the largest errors measured by
g(µ̃). The coarse training set is then updated with the newly identified points.
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Algorithm 2 Interpolation Points using SUrrogate error Estimator (IPSUE)
algorithm
Input: System matrices A(µ),B(µ),C(µ) , coarse training set �c of cardinality Nc , fine training

set � f of cardinality N f covering the interesting parameter ranges, tolerance εtol .
Output: Projection matrix V.
1: InitializeV = [ ],Vdu = [ ],Ve = [ ], ε = 1 + εtol , fix η, the number of moments to be matched.

Set i = 1.
2: Initial interpolation point µ̃1: a random sample from�c selected using rand(), µ̃

1
α : another ran-

dom sample from �c selected using rand(). Here, rand() is the intrinsic MATLAB®function.
3: while ε > εtol do
4: Perform Steps 4–6 from Algorithm 1.
5: Use Eq. (14) and obtain �(µ̃), ∀µ̃ ∈ �c.
6: µ̃i+1 = arg max

µ̃∈�c

�(µ̃).

7: µ̃i+1
α = arg max

µ̃∈�c

∣∣ẽTdu(µ̃)rpr(µ̃)
∣∣.

8: Form the RBF interpolant g(µ̃) of the error estimator �(µ̃) over � f .

9: Select n(1)
a . Identify {µ̃(1)

1 , . . . , µ̃(1)
na } from� f with the largest errors for g(µ̃). Usually, n(1)

a =
1.

10: Update the coarse training set with the newly identified parameters,
�c := �c ∪ {

µ̃
(1)
1 , . . . , µ̃(1)

na

}
.

11: i = i + 1.
12: ε = �(µ̃i ).
13: end while

5 Numerical Examples

In this section, we provide numerical results to show the efficiency of the proposed
IPSUE algorithm. The first example is from circuit simulation used in [14]. It is
characterized by its large parameter range. The second is a benchmark example of
a microthruster device, from the MORwiki collection [31]. This model has four
parameters. The final example is a finite element model of a waveguide filter, from
[27]. All numerical tests were performed in MATLAB®2015a, on a laptop with
Intel®Core™i5-7200U @ 2.5 GHZ, with 8 GB of RAM. In the numerical results,
Nμ refers to the cardinality of the fixed training set �, used in Algorithm 1, Nc, N f

are, respectively, the cardinality of the coarse and fine training sets used in Algo-
rithm 2 and finally Nt denotes the cardinality of the parameter test set �t used for
validating the accuracy of the final ROMs constructed by Algorithms 1 and 2. Also,
we use the same test sets for comparing the performances of Algorithms 1 and 2.
As mentioned earlier in Sect. 4.2, for the numerical examples, we have made use
of inverse multiquadric and thin-plate spline kernels [32]. From our experience, the
former was better able to interpolate the estimated error �(µ̃) for cases where �(µ̃)

depends less smoothly on the parameter. The latter gave a better performance when
the estimated error had a smoother variation as a function of the parameter. While
there is no additional hyperparameter in the case of the thin-plate spline, the tun-
ing parameter present in the inverse-multiquadric kernel can be used as an additional
degree of freedom for capturing the local behavior of the function being interpolated.
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Fig. 1 RLC interconnect
circuit

Table 1 Simulation settings
for the RLC interconnect
circuit

Setting Value

n 6134

εtol 10−3

Nμ 90 parameters

Nc {21, 27} parameters

N f 200 parameters

Nt 900 parameters

η 3

5.1 RLC Interconnect Circuit

This example models the large-scale interconnects in integrated circuit (IC) design.
It is represented in Fig. 1. The discretized model has dimension n = 6134. It is a
non-parametric system in time domain, but in the frequency domain, the frequency
f is considered as the parameter and the interpolation points are selected from a
wide frequency range: f ∈ [0 , 3] GHz. Table 1 gives the simulation settings used
for implementing Algorithms 1 and 2 to generate the reduced-order models for this
example.

Test 1: Algorithm 1 applied to RLC model

To enable comparison, we use the same training set � used in [14]. It consists of
90 samples covering the range of interest. The sampled frequencies are given by
fi = 3 × 10i/10, si = 2πj fi with i = 1, 2, . . . , 90. Algorithm 1 converges to the
set tolerance in just three iterations. The obtained ROM is of dimension r = 20. On
average, it takes 3.3s for the algorithm to converge. For the sake of robustness, we
test the ROM on a different set of test parameters �t with Nt = 900 parameters.
Figure 2a shows the error of Ĥ(s) for the parameters in �t .

Test 2: Algorithm 2 applied to RLC model

Next, we test Algorithm 2 on the RLC interconnect model. For this, we con-
sider two different coarse training sets �c of cardinality 21, 27 sampled as �

j
c =

3 × 10 j/10, j = 1, 2, . . . , 21 and j = 1, 2, . . . , 27.We consider different samplings
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Fig. 2 Results for the RLC model

for the fine training set in order to numerically illustrate that the proposed algorithm
is independent of the kind of sampling used. The fine training set � f consists of 200
logarithmically distributed parameters in the first case and in the second case con-
tains 200 parameters distributed as �

j
f = 3 × 10 j/10, j = 1, 2, . . . , 200. For the

RBF interpolation, we use thin-plate splines as the kernel function. It is given by
�(µ̃1, µ̃2) := (‖µ̃1 − µ̃2‖2)2 loge(‖µ̃1 − µ̃2‖2). Algorithm 2 converges to the spec-
ified tolerance in just three iterations for both choices of�c, with n(1)

a = 1. In the first
case, the obtained ROM is of dimension r = 21 and takes 1.6s to converge in aver-
age. The second case results in a ROM of dimension 21 and takes 1.7s on average to
converge to the defined tolerance. Figure 2b shows the error of Ĥ(s) at parameters in
the test set �t produced by the ROM obtained using Algorithm 2, with two different
coarse training sets. Clearly, Algorithm 2 takes less time than Algorithm 1, while
still producing a ROM that is uniformly below the tolerance, on an independent test
set.

5.2 Thermal Model

The second example is the model of the heat transfer inside a microthruster unit
[31]. It is obtained after spatial discretization using the finite element method and
has dimension n = 4257. The governing equation is given as

Eẋ(t) = (A0 −
3∑

i=1

hiAi )x(t) + Bu(t),

y(t) = Cx.
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Table 2 Simulation settings for the thermal model

Setting Value

n 4257

εtol 10−4

Nμ 625 parameters, log-sampled

Nc 256 parameters, log-sampled

N f 2401 parameters, log-sampled

Nt 1000 parameters, randomly sampled

η 1

Fig. 3 Results for the thermal model

Here, E,A0 are symmetric sparse matrices representing the heat capacity and heat
conductivity, respectively. Ai , i ∈ {1, 2, 3} are diagonal matrices governing the
boundary condition. The parameters h1, h2, h3 ∈ [1, 104] represent, respectively,
the film coefficients of the top, bottom, and side of the microthruster unit. We trans-
form the above system to the frequency domain and apply Algorithms 1 and 2.
In the frequency domain, the system has four parameters µ̃ := (s, h1, h2, h3) with
s = j2π f . The frequency range of interest is f ∈ [10−2, 102] Hz. The tolerance for
the ROM is set as 10−4 (Table2).

Test 3: Algorithm 1 applied to the thermal model

Owing to the wide range of parameters, we consider a large fixed training set �. To
construct it, we consider five logarithmically spaced samples for each of the four
parameters and form a grid consisting of 54 samples. For the test set �t , we form a
grid of 84 logarithmically spaced parameters and randomly select 1000 parameters
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Fig. 4 Dual-mode
waveguide filter model from
[27]

from it. The greedy algorithm takes 10 iterations to converge and results in a ROM
of size r = 86. On an average over five runs, the greedy algorithm takes 254s to
converge. In Fig. 3a, we see the performance of the resulting ROM over �t . For
several parameters, the ROM fails to meet the desired tolerance. This indicates that
the training set was not fine enough to capture all the variations in the solutions over
the parameter domain.

Test 4: Algorithm 2 applied to the thermal model

We now consider Algorithm 2 applied to the thermal model. The coarse training
set �c has 44 parameters, with logarithmic sampling. The fine training set � f has
74 parameters. For the RBF interpolation, we make use of thin-plate splines as the
kernel function. Further, we set n(1)

a = 1 in Step 9 of Algorithm 2 so that the coarse
training set is updated with one new parameter per iteration. The same test set as in
Test 3 is used. The resulting ROM has order r = 85 and its error over the test set is
below the tolerance, as shown in Fig. 3b. The algorithm took 162s to converge. The
runtime was measured as an average over five independent runs of the algorithm.
Compared with Algorithm 1, Algorithm 2 is able to meet the required tolerance with
a much smaller training set and also in shorter time.

5.3 Dual-Mode Circular Waveguide Filter

The next example is a MIMO system based on the model of a dual-mode circular
waveguide filter from [27], see Fig. 4. It is a type of narrow bandpass filter widely
used in satellite communication due to its power handling capabilities. Its operation
is governed by the time-harmonicMaxwell’s equations. After discretization in space,
the governing equations of the filter can be represented in the form of Eq. (5). The
system consists of just the frequency parameter s := j2π f , where f ∈ [11.5 , 12]
GHz is the operating frequency band of the filter. The affine form of the system
matrix is A (s) := S + s2T and B(s) := sQ. We have S,T ∈ R

n×n and Q ∈ R
n×2,

with n = 36426. The system has two inputs and two outputs. Table 3 summarizes
the simulation settings. The quantity of interest is the scattering parameters, obtained
via post-processing [28] from the system output y(s) := QTX(s). It is easy to see
that y(s) has the same expression as H(µ̃) in Eq. (3) for µ̃ = s. The error estimator
�(µ̃) in Sect. 3 can be directly applied to estimate the error of ŷ(s) computed by
the ROM. See [14] for detailed analysis. Since the system is MIMO, the scattering
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Fig. 5 Scattering parameters for the dual-mode filter

Table 3 Simulation settings for the dual-mode filter

Setting Value

n 36426

εtol 10−5

Nμ 51 parameters, uniformly spaced

Nc 17 parameters, uniformly spaced

N f 500 parameters, sampled randomly

Nt 101 parameters, uniformly spaced

η 1

parameters at a given s are in the form of a complex-valued matrix given by

S =
[
S11 S12
S21 S22

]
.

Scattering parameters are important in characterizing the performance of filters [26].

Test 5: Algorithm 1 applied to the dual-mode filter

Applying Algorithm 1 with the fixed training set � to the model results in a ROM of
size r = 10 with the greedy algorithm taking five iterations to converge. Since this
example is a MIMO system, we make use of Eq. (15). The average runtime over five
independent runs of Algorithm 1 was found to be 46s. Figure 5a plots the scattering
parameters computed from FOM simulations and those obtained from the ROM at
the parameters in the test set. We plot the absolute values of full-order scattering
parameters S11, S12 and the corresponding reduced ones Ŝ11, Ŝ12 on a Decibel scale.
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Fig. 6 Results for the dual-mode filter

In Fig. 6a, we plot the error of the scattering parameters Ŝ11, Ŝ12, Ŝ22 computed from
the ROM, over the test set �t . Note that since S12 = S21, we only show the error
|S12 − Ŝ12|.

Test 6: Algorithm 2 applied to the Dual-mode filter

In Step 8 ofAlgorithm 2, we construct an RBF surrogate for each of�i j , i, j ∈ {1, 2}
in Eq. (15) for this MIMO system. n(1)

a is set to be 1 and inverse multiquadric is used
as the kernel function. It is given by (µ̃1, µ̃2) := 1/(1 + (γ ‖µ̃1 − µ̃2‖2))2. γ is a
user-defined parameter andwe set γ = 16 in our experiments.We pick themaximum
among the four surrogates and add the corresponding parameter to the coarse training
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set, i.e., in Step 9 of Algorithm 2, we replace g(µ̃) with max
i, j∈{1,2} gi, j (µ̃). Algorithm 2

results in a ROM that is of the same size as the ROM from Test 5 (r = 10). However,
on average, Algorithm 2 only needs 24 s to converge, almost half that of the time
required in Test 5. In Fig. 6b, we plot the errors of the scattering parameters computed
from the ROM over the test set �t . Figure 5b plots the scattering parameters from
the FOM simulations and those computed by the ROM. Both algorithms result in
ROMs meeting the specified tolerance, but Algorithm 2 requires much shorter time
to generate the ROM.

6 Conclusion

In thiswork,wehaveproposed IPSUE an adaptive algorithm for updating the training
set and choosing the interpolation points for frequency-domain MOR methods. Our
target applications are cases where the problem parameters vary over a wide range of
values or the parameter space dimension is larger than two. In either of these cases,
many interpolatory MOR algorithms may take a long time to generate the ROM.
Moreover, a naive, heuristic sampling of the parameter training set may result in a
ROM that is not robust. IPSUE offers a viable means to generate reliable ROMs
that satisfy the user-defined tolerance and at the same time without being offline
expensive. The illustrated numerical examples show that it is a promising approach.
As future work, we plan to apply the algorithm to more complex models.
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